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e Quantum physics simulation.

E. “Manny” Knill: knill@boulder.nist.gov
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.
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Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.
e Example models.
A particle of mass m Iin one dimension.
H: Square integrable functions on R = (—o0, 00).

Unitary evolution according to Schrodinger’s equation:
Gop = —iHp.
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.

e Example models.

A particle of mass m in one dimension.
‘H: Square integrable functions on R = (—o0, 00).

H=-12 1V [..h=1]
Unitary evolution according to Schrodinger’s equation: %¢ = —1Hq.
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.

e Example models.

A particle of mass m in one dimension.
‘H: Square integrable functions on R = (—o0, 00).

H=-12 1V [..h=1]
Unitary evolution according to Schrodinger’s equation: %¢ = —1H4.

N particles in 3 dimensions.
H: Square integrable functions on R3%.

H = Zj\;l Ej(kinetic) + V;(potential) + > 1 « ; -1« v 1,5 (interaction)
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.

e Example models.

A particle of mass m in one dimension.
‘H: Square integrable functions on R = (—o0, 00).

H=-12 1V [..h=1]
Unitary evolution according to Schrodinger’s equation: %¢ = —1Hq.

N particles in 3 dimensions.
H: Square integrable functions on R3" .

H =Y E;(kinetic) + v;(potential) + 3, _._, -y I« (interaction)
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space 'H of wavefunctions.

e Example models.
A particle of mass m in one dimension.
‘H: Square integrable functions on R = (—o0, 00).

H=-12 1V [..h=1]
Unitary evolution according to Schrodinger’s equation: %¢ = —1H4.

N particles in 3 dimensions.
H: Square integrable functions on R3".
H =Y | E;(kinetic) + v;(potential) + 3, _._, -y I« (interaction)

Translation invariant 1-D lattice of spin-% systems.
H =Y, H*Y, with HY = 3 o 00,0
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space 'H of wavefunctions.
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.

e Some physical quantities. [Complexity for “physical” H, A, B, ...]
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2. a state space ‘H of wavefunctions.
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.

e Some physical quantities. [Complexity for “physical” H, A, B, ...]
The lowest energy of H. [In general: Hard]
The spectrum of H. [Complete: Hard. With resolution €: Q. easy.]
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.
e Some physical quantities. [Complexity for “physical” H, A, B, ...:]
The lowest energy of H. [In general: Hard]

The spectrum of H. [Complete: Hard. With resolution e: Q. easy.]
The partition function Z(3) = tr(e=°H).
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.
e Some physical quantities. [Complexity for “physical” H, A, B, ...:]
The lowest energy of H. [In general: Hard]
The spectrum of H. [Complete: Hard. With resolution e: Q. easy.]
The partition function Z(3) = tr(e=”#).  [Quadratic g. speedup]
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e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by

1. a Hamiltonian H generating unitary evolution in

2. a state space ‘H of wavefunctions.
e Some physical quantities. [Complexity for “physical” H, A, B, ...:]
The lowest energy of H. [In general: Hard]
The spectrum of H. [Complete: Hard. With resolution e: Q. easy.]
The partition function Z(3) = tr(e=”#).  [Quadratic g. speedup]
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.

e Some physical quantities. [Complexity for “physical” H, A, B, ...]
The lowest energy of H. [In general: Hard]
The spectrum of H. [Complete: Hard. With resolution e: Q. easy.]

The partition function Z(3) = tr(e=”#).  [Quadratic g. speedup]
Thermodyn. expectations tr(e P# A)/Z(3). [Quad. g. speedup]
Expectations (y|Aly) for known states |v).
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space ‘H of wavefunctions.

e Some physical quantities. [Complexity for “physical” H, A, B, ...]
The lowest energy of H. [In general: Hard]
The spectrum of H. [Complete: Hard. With resolution e: Q. easy.]

The partition function Z(3) = tr(e=”#).  [Quadratic g. speedup]
Thermodyn. expectations tr(e P# A)/Z(3). [Quad. g. speedup]
Expectations (|Aly) for known states [)).  [Q. easy to within e]
Correlation functions (i|e*t Ae =" BJy)). [Q. easy to within ¢
Response to probes under experimental conditions.
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Quantum Physics Simulation

e Superficial problem statement.
Given: A model of a quantum physics system.
Problem: Determine a physical quantity.

e A model of guantum physics may be characterized by
1. a Hamiltonian H generating unitary evolution in
2. a state space 'H of wavefunctions.

e Some physical quantities. [Complexity for “physical” H, A, B, ...]]
The lowest energy of H. [In general: Hard]
The spectrum of H. [Complete: Hard. With resolution e: Q. easy.]

The partition function Z(3) = tr(e=”#).  [Quadratic g. speedup]
Thermodyn. expectations tr(e P# A)/Z(3). [Quad. g. speedup]
Expectations (|Aly) for known states [)).  [Q. easy to within e]
Correlation functions (i|e*t Ae =" BJ1)). [Q. easy to within ¢
Response to probes under experimental conditions.

[“virtual” experiment is g. easy]
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Physics Simulation Algorithms: Common Features

Discretization and finitization of the model.
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Physics Simulation Algorithms: Common Features

Discretization and finitization of the model.
- Particle of mass m in one dimension.

Wavefunction: ¢ (z), x € R.
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Physics Simulation Algorithms: Common Features

Discretization and finitization of the model.
- Particle of mass m in one dimension.

................... e

—B N
Wavefunction: v (z), = € R. ze€{-B,...,0,B~,...,B}.
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Physics Simulation Algorithms: Common Features

Discretization and finitization of the model.
- Particle of mass m in one dimension.

—B N
Wavefunction: v (z), = € R. ze€{-B,...,0,B~,...,B}.

Hamiltonian: —iaa—z + V(x) > mFa?z) (@ FT 4V (z)|z) (2|
mox ... F'is the Fourier transform.
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Hamiltonian: —iaa—z + V(x) > mFa?z) (@ FT 4V (z)|z) (2|
mox ... F'is the Fourier transform.

Faithful realization in a finite number of qubits.
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Physics Simulation Algorithms: Common Features

Discretization and finitization of the model.
- Particle of mass m in one dimension.

—B N
. 1
Wavefunction: v (z), = € R. ze€{-B,...,0,B~,...,B}.
Hamiltonian: —%6‘9—; + V(x) > mFa?z) (@ FT 4V (z)|z) (2|

... F'is the Fourier transform.
Faithful realization in a finite number of qubits.
- |-B+r/N) — |r), r in binary.

Implementation of evolution.
-K=F), o) (@|FT, V=3 V(z))(z|

Trotterization: e =t = (e=#Kt/Te=Vt/TYT L O(1/T)
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Physics Simulation Algorithms: Common Features

Discretization and finitization of the model.
- Particle of mass m in one dimension.

—B N
. 1
Wavefunction: v(z), = € R. ze{-B,...,0,B~,...,B}.
Hamiltonian: —%6‘9—; +V(x) > mFa?z) (@ F1 4V (z)|z) (2|

... F'is the Fourier transform.
Faithful realization in a finite number of qubits.
- |-B+r/N) — |r), r in binary.

Implementation of evolution.

-K=F3 o) (z|FT, V=3 V(z)lz)(zl.
Trotterization: e =t = (e~ Kt/Te=Vt/TYT L O(1/T)

Information extraction: State preparation and measurement.

3



Faithful Evolution

e Example: Triangle XY -model.
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e Example: Triangle XY -model.

Three spin-1 systems A, B, C.
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Faithful Evolution

e Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H = OZ(A) 4+ Uz(B) 4+ JZ(C) 4 0x<A)0x(B) 4 Ux(A)Ux(C) 4+ Ux(B)Ux(C)

4
«—|Top|Bot|—|—|TOC



Faithful Evolution

e Example: Triangle XY -model.

Three spin-1 systems A, B, C.

Hamiltonian: J_Jmax 7

H=6"46"46940M5® 45 MNs O 4 5B 45O
Each term in H is readily simulatable.

(V) |
t - A z-rotation. *—@—

—0
6 z
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Faithful Evolution

e Example: Triangle XY -model.

Three spin-1 systems A, B, C.

Hamiltonian: J_Uwax 7

H=6"46"46940M5® 45 MNs O 4 5B 45O
Each term in H is readily simulatable.

(V) |
t - A z-rotation. —@&—
W W | | Y
e~ oz t:  Conjugate of an z-rotation by cnots. m

—0
6 z
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Faithful Evolution

Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H=6"46"46940M5® 45 MNs O 4 5B 45O
Each term in H is readily simulatable.

(U) |
L A z-rotation. *—&—
O

e~'7= o= t:  Conjugate of an z-rotation by cnots. m

But the terms do not all commute. Combine commuting terms:
H. ., =c®+5® 450 H., = 0. PN ® 45 P O 5 B ©

—0
6 z
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Faithful Evolution

e Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H=6"46"46940M5® 45 MNs O 4 5B 45O
Each term in H is readily simulatable.

(U) |
L A z-rotation. *—&—
O

e~'7= o= t:  Conjugate of an z-rotation by cnots. m

But the terms do not all commute. Combine commuting terms:

Hins = 00 4+ 0% 40,9, Hopy = 0.0,% + 0,76, + 6,00,
. w, e, © .
e~ Hintt — g=10z tg—ioz te—ioz 't gimijlarly for e~ *epit,

—0
6 z
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Faithful Evolution

Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H = OZ(A) 4+ Uz(B) 4+ Uz(C) 4 Ux<A)Ua:(B

Each term in H is readily simulatable.

() ] U
etz T A z-rotation. —@—

U
W) (V) _ .
e~t9= o= t:  Conjugate of an z-rotation by cnots. m

But the terms do not all commute. Combine commuting terms:

A B C A B A

H,, =0 )+0(z( )+a{ ) Heopt = 0.P0,® 4 6,®
| w, o’ © |
e~ Hintt — g=10z le=iox te—iox 't gimijlarly for e~ *Hepit,

O_x(C) 4+ O'x(B)O'x(C).
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Faithful Evolution

Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H = OZ(A) 4 Uz(B) 4+ JZ(C) 4 Ux(A)Ua:(B) 4 Jx(A)Ox(C) 4+ Ox(B)(Tx(C)

Each term in H is readily simulatable.

() ] U
etz T A z-rotation. —@—

U
W) (W) _ .
e~z Oz T Conjugate of an z-rotation by cnots. m

But the terms do not all commute. Combine commuting terms:

A) (©)

C
Hipy =0,V + 0% 40,9 Hop = 0,.M0,.Y + 0,.M0,. 9 + 0,70,
N @ o

e~ Hintt — g=i0z le=ioz te—ios L gimjlarly for e ~*Hepi?,

Trotterize: e iHt — = i(HingtHep)t
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e Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H = OZ(A) 4 Uz(B) 4+ JZ(C) 4 Ux(A)Ua:(B) 4 Jx(A)Ox(C) 4+ Ox(B)(Tx(C)

Each term in H is readily simulatable.
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U
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e~z Oz T Conjugate of an z-rotation by cnots. m
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Hamiltonian:
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Faithful Evolution

Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H = OZ(A) 4 Uz(B) 4+ JZ(C) 4 Ux(A)Ua:(B) 4 Jx(A)Ox(C) 4+ Ox(B)(Tx(C)

Each term in H is readily simulatable.

() ] U
etz T A z-rotation. —@—
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e~z Oz T Conjugate of an z-rotation by cnots. m

But the terms do not all commute. Combine commuting terms:
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Hipy =0,V + 0% 40,9 Hop = 0,.M0,.Y + 0,.M0,. 9 + 0,70,
N @ o

e~ Hintt — g=i0z le=ioz te—ios L gimjlarly for e ~*Hepi?,

Trotterize: et = [ i(HintHep)y |N

4
<—|T0p|BOt|—>|H>|TOC



Faithful Evolution

Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

(A B C B) _ (C
H—az)+az()+az()+0x) )+0x )+0x()0x()
Each term in H is readily simulatable.

() ] U
etz T A z-rotation. —@—

U
W) (W) _ .
e~z Oz T Conjugate of an z-rotation by cnots. m

But the terms do not all commute. Combine commuting terms:

H, . = O'z(A) + O'z(B) + O.Z(C)’ Hcpl _ O‘x(A)O'x(B) + Jx(A>Ux<C) + O'a:(B)O'x( ).

—_— W, B, O, i
e~ Hhintt = 719z teTt9z teTt9z o gimilarly for e ert?,
Trotterize: e~ iHt = (e iHimtHep)y |N

= (L= il — iHepy + O((|H[5)?)) )Y
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Faithful Evolution

Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

(A B C B) _ (C
H—az)+az()+az()+0x) )+0x )+0x()0x()
Each term in H is readily simulatable.

() ] U
etz T A z-rotation. —@—

U
W) (W) _ .
e~z Oz T Conjugate of an z-rotation by cnots. m

But the terms do not all commute. Combine commuting terms:

C
H, . = O'z(A) + O'z(B) + O.Z(C)’ Hcpl _ O‘x(A)O'x(B) + Jx(A>Ux< ) + O'a:(B)O'x( ).

| w, o’ © |
e~ Hintt — g=10z le=iox te—iox 't gimijlarly for e~ *Hepit,
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Faithful Evolution

Example: Triangle XY -model.

Three spin-1 systems A, B, C.
Hamiltonian:

H = OZ(A) 4 Uz(B) 4+ JZ(C) 4 Ux(A)Ua:(B) 4 Jx(A)Ox(C) 4+ Ow(B)Ox(C)

Each term in H is readily simulatable.
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Simulatability of Physical Systems

Physical universality thesis for quantum computers.
Given: Physical system S.
Physical Hamiltonian H > 0 for S.
Physically meaningful state |¢)) of S of av. energy FE.
Then: Itis possible to represent S, H and |¢) on qubits,
and evolve H for time ¢t using quantum gates,

with resources polynomial in
E, t and the approximation error.
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Simulatability of Physical Systems

Physical universality thesis for quantum computers.

Given: Physica
Physica

system S.
Hamiltonian H > 0 for S.

Physically meaningful state |¢)) of S of av. energy FE.
Then: Itis possible to represent S, H and |¢) on qubits,
and evolve H for time ¢t using quantum gates,

with resources polynomial in
E, t and the approximation error.

Evidence: No counterexample so far. ...

Typical representation relationships:
S can be approximated by N degrees of freedom.
Hamiltonian: Sum of pairwise interactions between degrees of freedom.
The energy is linear (maybe quadratic) in V.
A degree of freedom can be approximated by a “small” qubit register.
Simulating an arbitrary interaction on a pair of small registers is “efficient”.

5



The Virtual Quantum Physics Lab

Quantum computers can efficiently simulate an
experimental procedure on a specified quantum system.
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The Virtual Quantum Physics Lab

Quantum computers can efficiently simulate an
experimental procedure on a specified quantum system.
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The Virtual Quantum Physics Lab

Quantum computers can efficiently simulate an
experimental procedure on a specified quantum system.

e Requirements:
v/ Qubit representation of the quantum system.
v/ Evolution of its internal Hamiltonian.
v/ Simulation of coupling to experimental probes.

- Preparation of a physically meaningful initial state.
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The Virtual Quantum Physics Lab

Quantum computers can efficiently simulate an
experimental procedure on a specified quantum system.

e Requirements:
v/ Qubit representation of the quantum system.
v/ Evolution of its internal Hamiltonian.
v/ Simulation of coupling to experimental probes.
- Preparation of a physically meaningful initial state.

- Implementation of measurements with noise no worse
than the actual experiment would have.
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Measuring Unitary Expectations

o Given: Quantum system S, preparable in state |¢)).
Unitary U", with “controlled” implementations.
Problem: Measure (|U|y) to within e.
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3 ([¥X+UIY) + 1) = [y +Ulp)

4Prob(b, = 1)=(|¢)
WU ) — ([T o)
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Get Re(y|U ) from Prob(b,. = 1) + €/2.
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Measuring Unitary Expectations

o Given: Quantum system S, preparable in state |¢)).
Unitary U", with “controlled” implementations.
Problem: Measure (|U|y) to within e.

Solution with one qubit.
3 () ([¥X+UIY) + 1) = [y +Ulp)

4Prob(b, = 1)=(|¢)
WU ) — ([T o)

g +{Y|UUT|ep)
1/ — =2 — 9Re((xb|U|v))
[} o))+ Ulyy

L (o)) [

Get Re(y|U ) from Prob(b,. = 1) + €/2.
To obtain Im(y|U|y), replace U by U.
Requires O(1/¢?) repetitions.
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Unitary U", with “controlled” implementations.
Problem: Measure (|U|y) to within e.
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Measuring Unitary Expectations

e Given: Quantum system S, preparable in state |¢)).
Unitary U™, with “controlled” implementations.
Problem: Measure (|U|y) to within e.

Solution with amplitude estimation.
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Measuring Unitary Expectations

e Given: Quantum system S, preparable in state |¢)).
Unitary U™, with “controlled” implementations.
Problem: Measure (|U|y) to within e.

Solution with amplitude estimation.
Assume that Z,, = “selective —1 of |¢))” is implementable.
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e Glven:

Measuring Unitary Expectations

Quantum system S, preparable in state |¢)).

Unitary U™, with “controlled” implementations.
Problem: Measure (1|U|v) to within e.

Solution with amplitude estimation.
Assume that Z,, = “selective —1 of |)" is implgmentable.

[4)

Ut.ZyU.Zy)?

\ (aresin( | (Y|Up) | )/7)£d

/
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Solution with amplitude estimation.
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e Given: Quantum system S, preparable in state |¢)).
Unitary U™, with “controlled” implementations.
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Solution with amplitude estimation.
Assume that Z,, = “selective —1 of |)" is implgmentable.
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[4)

Obtain | (|U[y) | from +arcsin( | (¢|U|y) | )/7)£46.
Infer (|U|y) by doing the same with
U' = U JoNo| £ |1)(1] and [¢)') = [op)|+),.
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Measuring Unitary Expectations

o Given: Quantum system S, preparable in state |¢)).
Unitary U", with “controlled” implementations.
Problem: Measure (|U|y) to within e.

Solution with amplitude estimation.
Assume that Z,, = “selective —1 of |)" is implgmentable.

|+ aresin( | (Y|U) | )/7)£d

/

B UT,Zw_U_Zw 2j—|||||||||||||||||||_

[4)

Obtain | (|U[y) | from +arcsin( | (¢|U|y) | )/7)£6.
Infer (|U|y) by doing the same with

U’ = U |oyNo| + [1YNa| and |¢") = [h)[+),.
Requires O(1/¢) coherent, controlled applications of U.
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Measuring Hermitian Expectations

o Given: Quantum system S, preparable in state |¢)).
Hermitian A with e~**4 implementable.
Problem: Measure (| A|y) to within e.
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Measuring Hermitian Expectations

e Given: Quantum system S, preparable in state |¢)).
Hermitian A with e~**4 implementable.

Problem: Measure (|A|y) to within e.

Solution using unitary expectation measurements.
1. For small t, e~ = 1 — it A + O(|A|*t?).
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Solution using unitary expectation measurements.
1. For small t, e~ = 1 — it A + O(|A|*t?).
(Ple™ M) = 1 — it(Y|Alp) + O(|A]*t?)
2. Choose t such that O(]A|*t?) contributes at most te/2.
t = O(e/|A]%)
3. Measure (|e =) to within te/2.
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Measuring Hermitian Expectations

Given: Quantum system S, preparable in state |¢)).
Hermitian A with e~**4 implementable.
Problem: Measure (| A|y) to within e.

Solution using unitary expectation measurements.
1. For small t, e = 1 — it A + O(|A|*t?).
(Ple™ M) = 1 — it(Y|Alp) + O(|A]*t?)
2. Choose t such that O(]A|*t?) contributes at most te/2.
t = O(e/|A]%)
3. Measure (|e~*4!+)) to within te/2.

Requires O(|A|?/€?) uses of e~*4* with amp. estimation.
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Measuring Correlation Functions

e Given: Quantum system S, preparable in state |¢).
Operators A and B, implementable as needed.
Problem: Measure (1)|e' ! Be=*t AJ)) to within e.
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Measuring Correlation Functions

e Given: Quantum system S, preparable in state |¢).
Operators A and B, implementable as needed.
Problem: Measure (1)|e'* ' Be=*t AJ)) to within e.

If A and B are unitary, let U = e*?*Be~*"* A and measure
(|U) to within e.
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Measuring Correlation Functions

e Given: Quantum system S, preparable in state |¢).
Operators A and B, implementable as needed.
Problem: Measure (1)|e'* ' Be=*t AJ)) to within e.

If A and B are unitary, let U = e*?*Be~*"* A and measure
(|U) to within e.

A and B are Hermitian. Let B(t) = ptHt B o—iHt
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Measuring Correlation Functions

Given: Quantum system S, preparable in state |¢).
Operators A and B, implementable as needed.
Problem: Measure (1)|e'* ' Be=*t AJ)) to within e.

If A and B are unitary, let U = e*?*Be~*"* A and measure
(|Uyp) to within e.

A and B are Hermitian. Let B(t) = et Be44t

1. Obtain S = 3", ,_ 1 (—1)* (gl D BOse(-D sy £ g,
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Measuring Correlation Functions

Given: Quantum system S, preparable in state |¢).
Operators A and B, implementable as needed.
Problem: Measure (1)|e'* ' Be=*t AJ)) to within e.

If A and B are unitary, let U = e*?*Be~*"* A and measure
(|Uyp) to within e.

A and B are Hermitian. Let B(t) = et Be44t

1. Obtain S = 3", ,_ 1 (—1)* (gl D BOse(-D sy £ g,
2. S =4(s*(|B(t)AlY) + O((JA| + |BJ)°s?)) + 6.
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Measuring Correlation Functions

Given: Quantum system S, preparable in state |¢).
Operators A and B, implementable as needed.

Problem: Measure (1)|e'* ' Be=*t AJ)) to within e.

If A and B are unitary, let U = e*?*Be~*"* A and measure
(|Uyp) to within e.

A and B are Hermitian. Let B(t) = et Be44t

1. Obtain S = 3", ,_ 1 (—1)* (gl D BOse(-D sy £ g,
2. S =4(s*(|B(t)AlY) + O((JA| + |BJ)°s?)) + 6.

3. Sett =0(¢/(|A] + |B])?), § = O(es?).
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Measuring Correlation Functions

Given: Quantum system S, preparable in state |¢).
Operators A and B, implementable as needed.

Problem: Measure (1)|e'* ' Be=*t AJ)) to within e.
If A and B are unitary, let U = e*?*Be~*"* A and measure
(|Uyp) to within e.
A and B are Hermitian. Let B(t) = et Be44t
1. Obtain S = 3", ,_ 1 (—1)* (gl D BOse(-D sy £ g,
2. S =4(s*(|B(t)AlY) + O((JA| + |BJ)°s?)) + 6.
3. Sett =0(¢/(|A] + |B])?), § = O(es?).

Requires O((|A| + |B|)3/€3) uses of e(~D"iB(1)se(—1)"iAs,
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Measuring Correlation Functions

e Given: Quantum system S, preparable in state |¢).
Operators A and B, implementable as needed.
Problem: Measure (1)|e' ' Be=*t AJ)) to within e.

If A and B are unitary, let U = e*?*Be~*"* A and measure
(|Uy)) to within e.

A and B are Hermitian. Let B(t) = e'HtBe~44t

1. Obtain S = 3", ,_ 1 (—1)*H0(gle- D" BOse(-D sy £ g,
2. S =4(s*(|B(t)AlY) + O((JA| +|BJ)’s?)) £ 6.

3. Sett =0(¢/(|A] + |B])?), § = O(es?).

Requires O((|A| + |B|)3/€3) uses of e(~D"iB(1)se(—1)"iAs,
Note network simplification:

4 G:I:z’AsH e—thH e:l:z'BsH piHt h <= 4 G:I:z’AsH e—thH e:l:z'BsH piHt h
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;} of eigenvalues of H.
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;} . of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;} . of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.
Spectral density with resolution € and signal-to-noise (SNR) S.
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.
Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;} . of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.

Spectral density with resolution € and signal-to-noise (SNR) S.
1. Measure f(t) = tr(e %) /N £ § for
t=0,....,(M=2)A, (M—-1)A.
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.
Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;} . of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.

Spectral density with resolution € and signal-to-noise (SNR) S.
1. Measure f(t) = tr(e %) /N £ § for

t=0,....,(M=2)A, (M—-1)A.

Note: tr(e™ ) /N = (yple=H|yp) for 1) = =37, [k} kY,
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;} . of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.
Spectral density with resolution € and signal-to-noise (SNR) S.
1. Measure f(t) = tr(e %) /N £+ § for

t=0,....,(M=2)A, (M—-1)A.
Note: tr(e ™) /N = (ule™ "y for [1)) = 37 k) k),
2. Compute the discrete Fourier transform f of f.
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.
Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;} . of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.

Spectral density with resolution € and signal-to-noise (SNR) S.
1. Measure f(t) = tr(e %) /N £+ § for
t=0,....,(M=2)A, (M—-1)A.
Note: tr(e ™) /N = (ule™ "y for [1)) = 37 k) k),
2. Compute the discrete Fourier transform f of f.
faA) = e AN

A

fooo= A faa)enn/
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;} . of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.
Spectral density with resolution € and signal-to-noise (SNR) S.
1. Measure f(t) = tr(e %) /N £+ § for

t=0,....,(M=2)A, (M—-1)A.
Note: tr(e~ 1) /N = (gle~ 1]y for [y) = T Lyl
2. Compute the discrete Fourier transform f of f.
faA) = e AN
f = %—Zl f<1A>e@‘2“/M

Range: 1 > |H|. Resolution: 75 < e. SNR: § < 1/8S.
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Measuring Spectra

e Given: Quantum system S with Hamiltonian H.

Problem: Measure the spectrum of H.
Spectrum of H: Multiset {\;}, of eigenvalues of H.

e Measuring the full spectrum is typically exponentially hard.
Spectral density with resolution € and signal-to-noise (SNR) S.
1. Measure f(t) = tr(e %) /N £+ § for

t=0,....,(M=2)A, (M—-1)A.
Note: tr(e~ 1) /N = (gle~#H1]y) for [y) = T Lyl
2. Compute the discrete Fourier transform f of f.
faA) = e AN
f = A f<1A>e@‘2“/M

Range: 1 > |H|. Resolution: 75 < e. SNR: § < 1/8S.
Requires O(|H|S/¢) uses of e—’Ht with ¢t up to O(1/e).
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State preparation Problems

e Prepare the ground state of H?
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State preparation Problems

e Prepare the ground state of H?

... appears to be difficult in general.
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State preparation Problems

e Prepare the ground state of H?

... appears to be difficult in general.

e Prepare a thermodynamic state
with density matrix e~ /tr(e=7H)?
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State preparation Problems

e Prepare the ground state of H?

... appears to be difficult in general.

e Prepare a thermodynamic state
with density matrix e~ /tr(e=7H)?

... can simulate contact with a thermal bath, but efficiency?

12



Contents

Title: 1QI1 04, Seminar 13 ...t i 0 Measuring Unitary Expectations Il..................... top...8
Quantum Physics Simulation I......................... top...1 Measuring Hermitian Expectations .................... top...9
Quantum Physics Simulation Il ........................ top...2 Measuring Correlation Functions..................... top...10
Physics Simulation Algorithms: Common Features .... top...3 Measuring Spectra. ........coviiiiiiii i top...11
Faithful Evolution............ ... .o i top...4 State preparation Problems ................ ... ..., top...12
Simulatability of Physical Systems..................... top...5 ReferencCes ... ..o 14
The Virtual Quantum Physics Lab..................... top...6

Measuring Unitary Expectations |...................... top...7

13

—| | |—| |TOC



References

[1] R.P. Feynman. Simulating physics with computers. Int. J. Theor. Phys., 21:467-488, 1982.

[2] S. Lloyd. Universal quantum simulators. Science, 273:1073-1078, 1996.

[3] C. Zalka. Threshold estimate for fault tolerant quantum computation. quant-ph/9612028, 1996.

[4] D.S. Abrams and S. Lloyd. Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett., 79:2586-2589, 1997.

[5] C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, and C. Negrevergne. Interpretation of tomography and spectroscopy as dual forms of quantum computations.
Nature, 418:59-62, 2002. quant-ph/0109072.

[6] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Simulating physical phenomena by quantum networks. Phys. Rev. A, 65:042323/1-17, 2002.
quant-ph/0108146.

14
<=l | [ [ [Toc



